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We use a neural-network technique to search for standard model (SM) single-top-quark production
in the 106 pb�1 dataset accumulated by the CDF detector during 1992 � 1995 collider run (\Run
I"). Using a sample of 64 W+1; 2; 3 jets events, we set a 95% C.L. upper limit of 24 pb on W -gluon
and W* combined single-top cross section.

PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Rm, 87.18.Sn

At the Tevatron, top quarks produced in pairs through
the strong interaction were observed [1, 2]. Within the
standard model, top quarks are also expected to be
produced singly in the electroweak channel [3], mainly
through o� mass shell W production (\W*") and W -
gluon fusion (\Wg") processes, shown in Fig. 1. The
measurement of single-top events is of particular inter-
est because the production cross section is proportional
to jVtbj2, where Vtb represents the Cabibbo-Kobayashi-
Maskawamatrix element relating top and bottom quarks.
Assuming jVtbj = 1, the next-to-leading order predicted
cross sections at

p
s = 1:8 TeV for W* and Wg channels

are 0.76 pb and 1.40 pb, respectively [4]. The D� col-
laboration has published upper limits on single-top pro-
duction of 22 pb on Wg and 17 pb on W*, both at 95%
con�dence level (C.L.) [5]. The CDF collaboration re-
ported lower 95% C.L. limits: 13 pb and 18 pb on for
the Wg and W* cross sections respectively, and 14 pb
for the combined cross section as determined in a sepa-
rate analysis [6]. In this paper we report on a search for
the combined W* and Wg single-top production using
a neural-network technique to maximize the discriminat-
ing power of seven kinematic variables. This technique
is expected to be more sensitive than the method em-
ployed in [6]. Besides using a larger amount of informa-
tion, the analysis also features marginally higher signal
purity obtained by retuning the event selection. The im-
provement in the average expected upper limit on the
single-top cross section is 20% if the SM signal cross sec-
tion is assumed.

The �nal state of theW* channel features two b-quarks
and the decay products of the W boson. Similarly, the
Wg channel is characterized by two b-quarks and the W
decay products plus an additional light quark jet (u, d).
In addition, initial and �nal state radiation can increase
the jet content of the �nal state. Our analysis will focus
on the channels with leptonic W decays W ! e�e; ���.

’q

q

W*

b

t q q’

W

b
t

b

g

FIG. 1: Representative Feynman diagrams for single-top-
quark production at the Tevatron: s-channel W* (left) and
t-channel W -gluon fusion (right).

TABLE I: Njs cut eÆciencies for signal and background.
�Njs

(W+1 jet) represents the fraction of W+1 jet events with
Njs = 1, after the initial selections were imposed. Similarly,
�Njs

is the fraction of W+1, 2, and 3 jets events passing the
Njs selections. The overall �tot results from multiplying the
eÆciencies of the initial and the Njs selections.

EÆciency W* Wg non-top t�t
�Njs

(W+1 jet) 43.4% 39.7% 23.9% 42.7%
�Njs

(W+3 jets) 72.9% 75.2% 73.5% 42.8%
Combined �Njs

83.6% 74.1% 47.6% 59.7%
Overall �tot 2.4% 1.6% 0.02% 1.9%

These yield a sample of \lepton+jets" events that we can
study using many of the tools developed for the CDF top
pair production (t�t) cross section analysis [7].

This analysis uses the data from p�p collisions at
p
s =

1:8 TeV collected with the Collider Detector at Fermilab
between 1992 and 1995. A thorough description of the
detector is provided elsewhere [8]. We select the events
having an isolated electron (muon) with transverse en-
ergy ET > 20 GeV (transverse momentum pT > 20
GeV/c), and missing transverse energy 6ET> 20 GeV [9].
The t�t or Z boson decays are removed by rejecting events
containing an additional isolated track with pT > 15
GeV/c and charge opposite to that of the primary lepton
[10]. Also rejected are Z candidates in which there are
two opposite-charge leptons with invariant mass between
75 and 105 GeV/c2. We further require that there are
one, two, or three jets with ET > 15 GeV and pseudo-
rapidity j�j < 2:0 (\tight" jets) in the event. At least
one of these jets should be associated with a b-quark de-
cay (\B-tagged") as determined by observing a displaced
vertex using tracks reconstructed in the silicon vertex
detector (SVX) [11]. After these initial selections, the
backgrounds can be classi�ed as non-top (mostly QCD
multijet) and t�t production.

We further reduce backgrounds by exploiting the dis-
tributions of \soft" jets in the event. These are jets with
ET > 8 GeV and j�j < 2:4 which do not pass the above
tight jet criteria. Tight and soft jet multiplicities are de-
noted by Njt and Njs. We use Njt to de�ne and label
the jet multiplicity bins W + Njt jets. For example, a
W + 3 jets event contains exactly three tight jets and
possibly additional soft jets. Fig. 2 shows the Njt ver-
sus Njs Monte Carlo distributions forW*, Wg, non-top,
and t�t processes. The PYTHIA Monte Carlo program [12]
was used, followed by the CDF detector simulation. Op-
timal signal to background ratio is obtained by demand-
ing Njs = 1 in the W+1 jet events, and Njs = 0 in the
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FIG. 2: Njs versus Njt distribution for simulated signal and
background events passing the initial selection described in
the text. Non-top backgrounds are suppressed by requiring
Njs = 1 for W+1 jet events (Njt = 1). We reduce the t�t
background by requiring Njs = 0 for W+3 jets events (Njt =
3).

W+3 jets events. There is no Njs requirement for the
W+2 jets events. As shown in Table I, the soft jets re-
quirements remove over 50% of the non-top and 40% of
the t�t events passing initial selections. If we assume the
theoretical W* and Wg cross sections [4] we arrive at
the signal contributions listed in Table II. The expected
numbers of t�t and non-top events are also given in Ta-
ble II. The t�t expectation is obtained using a PYTHIA

Monte Carlo calculation normalized to the theory predic-
tion �t�t = 5:1�0:9 pb [13]. For the non-top background,
the primary source (approx. 65%) is the W + heavy
avor production process �qq0 ! Wg with g ! b�b; c�c,
and gq ! Wq0 [11]. Other sources include \mistags"
(17%), where a light-avor jet is misidenti�ed as heavy
avor jet, direct b�b production (11%), Z+heavy avor
and Z ! � �� (5%), and also diboson processesWW , WZ
(2%). The non-top expectations are based on the calcu-
lation performed in the previous CDF single-top analysis
[6] which we correct for di�erences in the selection cri-
teria. To estimate the shape of the non-top background
kinematic distributions we use a PYTHIA generated sam-
ple of W+heavy avor events.

The estimated signal and background contributions
outlined above can be combined to predict a signal to
noise ratio of 1/13, which implies a challenging search.
We maximize our discriminating power by employing an
Arti�cial Neural Network (ANN) technique [14]. ANN's
employ information from several kinematic variables
while accounting for the correlations among them. The

TABLE II: Signal and background contributions expected and
total number of events observed in Run I after all selection
cuts described in the text have been imposed. Wg and W*
uncertainties are associated with the detector and do not in-
clude theoretical uncertainties given in Ref. [4].

Process W+1 jet W+2 jets W+3 jets
Wg 0:5� 0:2 1:5� 0:4 0:2� 0:1
W* 0:2� 0:1 1:2� 0:3 0:2� 0:1
t�t 0:2� 0:1 3:7� 1:1 3:6� 1:1
non-top 15:6 � 3:1 24:0� 4:5 3:8� 0:8
Total 16:5 � 3:1 30:4� 4:7 7:8� 1:4
Observed 14 41 9

goal is to design an ANN to classify events in one of three
categories: single-top (W* andWg), t�t, and non-top. We
do not attempt to distinguish betweenW* andWg signal
events, as most of the kinematic distributions considered
in this analysis are very similar for the two processes (see
Fig. 3). The di�erences between the two signal channels
are accommodated by training and testing the network
withW* andWg events in the proportion expected from
SM (Table II). We will subsequently demonstrate that
our method is rather insensitive to the precise W*�Wg
mixing proportion within a range of �50% of its SM
value.
The network is a feed-forward perceptron with one in-

termediate (hidden) layer and three output nodes. The
advantages of using one output node for each class of
events are detailed in Ref. [15]. For training we use 30000
Monte Carlo events, and require an output of (0,1,0) for
signal, (0,0,1) for t�t, and (1,0,0) for non-top background.
The weights are updated according to the \Manhattan"
algorithm in JETNET [16] with default parameters.
To select the inputs of the ANN, we started from a

set of 18 variables with good signal-background separa-
tion potential [6, 17, 18]: Ej1

T , Ej2
T , E`

T , 6ET , HT ,
p
ŝ,

M `�b, M jj , P jj
T , �jj , �j1, �j2, Q� �, cos( b̀q), Rmin, Njt,

Njs, NB�tags. Here j1 and j2 are the leading jets in
the event, HT is the total transverse energy de�ned as
E`
T+6ET+

P
Ej
T where the last term includes both the

tight and the soft jets,
p
ŝ is the total energy in the

center-of-mass system, `�b refers to the lepton, neutrino,
and leading B-tagged jet system, jj refers to the j1� j2
system, Q � � is the product between the primary lep-
ton charge and the pseudorapidity of the highest-ET un-

tagged jet (q), b̀q is the angle between the direction of
the lepton and that of the q jet, and Rmin is the mini-
mum separation

p
(Æ�)2 + (Æ�)2 among all possible pairs

of jets in the event. We considered a large number of
combinations of variables that can be drawn from this
18-variable set. For each combination we minimized a
typical mean squared error function [15]:

E =
1

N
�
NX
k=1

j
�!
Ok �

�!
T kj2 (1)
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FIG. 4: Graphical representation of the projection mapping
(O1; O2; O3) ) (x; y). We expect the dotted area to be lit-
tle populated, as events in this region would have to have:
O2 < O1, O3. In terms of probabilities, this inequality would
contradict our earlier observation that signal is in general sit-
uated between t�t and non-top backgrounds (Fig. 3).

onto the plane of equation O1 + O2 + O3 = 1, as shown
in Fig. 4. The (x; y) signal and background distributions
are presented in Fig. 5, along with the data. We employ
a maximum likelihood �t to these distributions to esti-
mate the signal content of the Run I dataset. We note
that Fig. 5 shows improved separation between signal
and background compared to the individual input vari-
ables of Fig. 3. To quantify this separation one can for
example de�ne a \signal region" as the locus of the out-
put points with O2 > O1; O3. This signal region contains
67% of the signal, 27% of the non-top, and 24% of the t�t
Monte Carlo events, respectively.
The performance of this method is tested a priori by

constructing simulated experiments using Monte Carlo
generated event samples (\pseudo-Run I" datasets). A
simulated experiment contains Ns signal, Nnt non-top,
and Nt�t t�t events, where the number of events in each
category is drawn from a Poisson distribution using the
expected mean values in Table II. We propagate these
events through the network and form the (x; y) output
distribution. The latter is �tted using a background-
constrained binned likelihood:

L(ns; nnt; nt�t) = Lbackground �Lshape =

G1(nnt)G2(nt�t)

NbinsY
i=1

e�ni � ndii
di!

(2)

where ns, nnt, nt�t are the parameters of the �t, repre-
senting the numbers of signal, non-top, and t�t events re-
spectively present in the sample. Moreover, ni = nsfs;i
+ nntfnt;i + nt�tft�t;i is the expected number of events
in the i-th bin, and fs;i, fnt;i, ft�t;i are the fractions of
Monte Carlo single-top, non-top, or t�t appearing in bin i.
By di is denoted the number of events in the simulated
experiment that populate the i-th bin. The Gaussian
functions G1(nnt), G2(nt�t) constrain the non-top and t�t
backgrounds to the expected values: 43:3 � 8:4 non-top
and 7:4� 2:2 t�t events, respectively.

TABLE III: Systematic uncertainties (in number of events).
The second column corresponds to the theoretical prediction
�SM = 3:9 signal events. The third column lists the uncer-
tainties estimated at the measured value ns = 23:9 events.
The overall uncertainties Æn and Æs are obtained by adding in
quadrature the individual e�ects.

Normalization only e�ects
Luminosity 0.16 0.98
Trigger and lepton identi�cation 0.39 2.39
B-tag eÆciency 0.39 2.39
Total Æn 0.57 3.52

Shape and normalization e�ects
Signal generator 0.12 0.06
Background generator 0.15 0.62
Jet energy measurement 1.49 2.76
Initial and �nal state radiation 0.51 0.80
Parton distribution functions 0.16 0.16
Top quark mass 0.17 0.86
Total Æs 1.59 3.07

Di�erent scenarios regarding signal expectation were
also investigated. Speci�cally, we considered signal cross
sections ranging from 0 pb to 20 pb. For each case, we
performed 10000 simulated experiments. In Fig. 6 we
show the ns distributions for �s = 2 pb and �s = 10
pb. The mean values of ns along with the 16 and 84
percentile points are presented in Fig. 7. We note that
the mean of the �tted cross sections is consistent with
the input cross section for all cases. We further tested
the sensitivity of our method to the particular ratio of
Wg and W* cross sections (RWg=W*). Two situations
were considered: �s = 2 pb and �s = 10 pb. Simulated
experiments were constructed with one of seven di�erent
values of RWg=W*, but �tted to the standard templates
of Fig. 5. The results are shown in Fig. 8, and show that
the mean of the �tted cross sections varies by less than
11% across the RWg=W* range studied.

The systematic uncertainties for this analysis are di-
vided into two groups. The �rst group consists of sys-
tematic e�ects which modify only the rates of events ac-
cepted, and not the shapes of the distributions of input
variables. The luminosity of 106 pb�1 has an uncertainty
of �4.1% [19]. The uncertainty on the trigger and lepton
identi�cation eÆciency has been estimated to be 10%.
Moreover, the eÆciency for identifying jets containing
B-hadrons has an uncertainty of 10% [7]. These uncer-
tainties can be expressed in number of events by simply
multiplying by the particular single-top content (Table
III).

The second group of systematic uncertainties includes
the e�ects that impact both the shapes of the Monte
Carlo templates of Fig. 5 and the rates of events ac-
cepted. To illustrate how these systematics are extracted,
let us consider the uncertainty associated with the signal
generator (SG). We start by generating new W* and
Wg samples using the HERWIG [20] program instead of
PYTHIA. Among the di�erences between the two genera-
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FIG. 5: Monte Carlo and CDF data 2-dimensional output distributions from projecting all output points onto the plane
O1 +O2 +O3 = 1. Of the 64 data events, 35 events overlap with the previous CDF search for combined single-top production
[6].

tors, we note the hadronization approach and the under-
lying event modeling. The new samples are run through
the ANN, and simulated experiments are constructed
based on the recalculated acceptances and output shapes.
Each experiment is then �tted to the standard templates
of Fig 5. The uncertainty ÆsSG is the absolute value of
the shift in the mean �tted signal contribution ns.

The uncertainty ÆsBG related to the background gen-
erator is similarly calculated. In this case, the non-top
sample was a mixture of two subsamples HERWIG Wb�b,
and PYTHIA Wc�c and Wc, while the t�t background was
generated with HERWIG. Fig. 9 shows a comparison be-
tween the HERWIG Wb�b events and the default W+jets
sample generated with PYTHIA. A good level of agree-
ment regarding the shapes of the kinematic distributions
can be observed. We note that ÆsBG accounts for a small
fraction of the total Æs. As shown in Table III, the largest
contribution to Æs comes from the uncertainty in the mea-
surement of jet momenta ÆsJES . A change in the jet mo-
mentum scale simultaneously impacts �ve of the seven
kinematic variables used in our analysis, which can lead
to signi�cant changes on an event by event basis. As de-

tailed in Ref. [9], we apply +1� and �1� shifts in the
PT scale of the jets, and de�ne ÆsJES as the average dif-
ference: (Æs+1� � Æs�1�)/2. To study the uncertainty
associated to the initial state radiation (ISR) we turn
o� ISR in PYTHIA and regenerate signal and background
samples. We take ÆsISR to be one half the shift in the
mean �tted signal contribution. To isolate the e�ects
of �nal state radiation (FSR) we start from the no-ISR
PYTHIA samples and select the (no-ISR, no-FSR) subset
of events in which every jet matches to a �nal state parton
within a (�; �) distance of 0.4. The uncertainty ÆsFSR is
de�ned to be (ÆsISR;FSR� ÆsISR)=2. Combined system-
atic uncertainty on the initial and �nal state radiation is
obtained by adding in quadrature ÆsISR and ÆsFSR. We
evaluate the uncertainty ÆsPDF due to the parton distri-
bution function set by switching to the CTEQ 3L [21] set
from the default GRV 94L [22] choice in PYTHIA. The last
systematic e�ect studied is the top quark mass. We vary
the top quark mass from the default Mtop = 175 GeV
to 170 and 180 GeV respectively, and generate new W*,
Wg, and t�t samples. We take ÆsMtop to be the larger of
the shifts Æs170 and Æs180.
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FIG. 7: Test of the ANN �tting technique under di�erent
hypotheses for signal cross section. As in Fig. 6, we note good
agreement between the input and �tted signal cross sections.
The theoretically calculated value is �SMs = 2:2 pb [4]. The
ends of the error bars mark the 16 and 84 percentile points
for each �tted �s distribution.

Finally, the magnitude of the systematic uncertainties
depends on the particular signal content used in perform-
ing simulated experiments. To exemplify this, let us con-
sider the jet energy scale e�ect, which accounts for the
largest fraction of the total Æs. The variation of ÆsJES

with the input signal mean �s is presented in Fig. 10,
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FIG. 8: Test of the ANN �tting technique under di�erent
hypotheses for Wg to W* cross section ratio RWg=W*. This

ratio is expressed as the fraction f of the SM value RSM
Wg=W* =

1:8. Two values for the combined signal cross section are
considered: �s = 2 pb and �s = 10 pb.

where the �t shown is a parabola. Consequently, the val-
ues listed in the second column of Table III (�s = 3:9
events) will be used in deriving the a priori single-top
results, while the third column values (�s = 23:9 events)
will be used in expressing the signal cross section mea-
sured from the CDF data.
Simulated experiments based on the SM expectations

of Table II result in a distribution of ns having a mean
of 3.9 signal events and standard deviation of 5.9 events.
Given this signi�cant uncertainty, we focus on calculat-
ing the expected limit for single-top production. For
each simulated experiment, L(ns; nnt; nt�t) is integrated
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FIG. 9: Distributions of four of the ANN input variables
for HERWIG Wb�b events (open histograms) and the default
PYTHIA W+jets sample (shaded histograms). All histograms
are normalized to unit area for comparison.
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momenta [9]. The squares represent the shifts Æs�1�, while
the triangles correspond to the combined ÆsJES de�ned as
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out with respect to nnt; nt�t for all values ns = �s to ob-
tain the probability density f(�s). We further assume a
uniform \prior" distribution, and restrict to the physical
range �s > 0. The systematic e�ects are accounted for
by smearing f(�s) as follows. To perform the smearing,
we convolute f(�s) with two Gaussian functions of unit
means and widths equal to Æn and Æs, respectively. The
smeared function is numerically integrated to yield the
95% C.L. limit �95 for the given simulated experiment.
The mean value of the individual �95's distribution is
10.6 pb and de�nes the mean expected (or \a priori")
limit on the single-top cross section in the presence of
the signal. Compared to the previous CDF combined
single-top study [6], the neural-network method features
an improvement of 21% in the a priori con�dence limit.
Roughly 7% of this improvement comes from retuning the
selection criteria, with Njs selection replacing the Ml�b

window cut. Using a multi-variate technique (seven vari-
ables rather than HT alone) accounts for the remaining
14%.
We have applied this method to the Run I dataset,

where 64 events pass the selection criteria (Table II). The
overlap with the 65-event sample of the search reported
in Ref. [6] is 35 events. Fig. 5 shows the distribution of
data events in the O1+O2+O3 = 1 plane. We maximize
the likelihood of Eqn. (2) to extract a signal contribution
of ns = 23:9 � 7:7 (stat) � 4:7 (syst) events, or equiva-
lently 13:5 � 5:1 pb, including systematic uncertainties.
This can be compared to the expected value of 2.2 pb.
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FIG. 11: The x and y neural-network output distributions for
the data events (black line) and for the Monte Carlo events
mixed in the proportions returned by the �t (gray line), re-
spectively.

It can be seen in Fig. 5 that a signi�cant fraction of
the data events are indeed consistent with the simulated
signal distribution. The numbers of background events
returned by the likelihood �t are: 36:0�6:2 non-top, and
7:6� 2:0 t�t events, respectively. Fig. 11 shows the ANN
output projected on the x and y axes for the data events
and Monte Carlo events mixed according to the above
�t results. Using the procedure previously described, we
calculate the upper limit on single-top cross section:

�(W* +Wg) < 23:8 pb, at 95% C.L. (stat+syst) (3)

Several cross checks of the results have been done. Due
to the large expected non-top contribution in the data,
the non-top background model is perhaps the most im-
portant factor determining the ANN �t result. As de-
scribed in the previous sections, our non-top model is
a PYTHIA sample of W+heavy avor jets events. Using
HERWIG Wb�b, t�t, and PYTHIA Wc�c, Wc samples we de-
rived the systematic uncertainty listed in Table III. To
further test how the shape of the non-top ANN output
distribution depends on the particular Monte Carlo gen-
erator, we have studied a WBBGEN [23] sample of Wb�b
events. This sample was run through the ANN, and
the resulting distribution was used to �t the data, along
with the default signal and t�t distributions of Fig. 5.
The �t yields a signal contribution �s = 11:1 � 5:2 pb
(stat+syst), consistent with the 13:5� 5:1 pb value ob-
tained using the PYTHIA background estimation. Another
case considered was the extreme alternative of replac-
ing the default non-top sample with a PYTHIA sample of
W+light avor jets events where a jet is mistagged as a
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B-jet. We have found that the ANN input and output
distributions are very similar for the mistags and the de-
fault non-top samples, con�rming that the mistags are
modeled well in our analysis. Finally, we performed a
\goodness of �t" test by employing a simple �2 �t. For
this study, the (x; y) output space was divided into 10
bins with roughly equal data populations. We �t the
data as a weighted sum of the signal and background
templates (10-bin histograms) to obtain �s = 15:0� 5:9
pb (stat+syst), with a �2 of 3.2 for 6 degrees of free-
dom, indicating reasonable agreement between data and
Monte Carlo output distributions.
In summary, we have searched for single-top produc-

tion using a neural-network method. We constructed a
network whose outputs estimate signal and background
posterior probabilities for every given event. The method
presented here improves the previous CDF search strat-

egy reported in [6]. By analyzing the Run I dataset,
we found an upper limit of 24 pb (at 95% C.L.) on the
single-top cross section.
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